

HYDRONIC FORMULAS

COMPUTING FLOW FROM BTU/h		
Simplified formula	GPM = BTU/h ÷ (∆t x 500)	
Example: Determine the flow of 286,000 BTU/h at a 20°F differential temperature.	GPM = 286,000 ÷ (20 x 500) GPM = 286,000 ÷ 10,000 GPM = 28.6	

CALCULATING ACTIVE LOOP LENGTH	
Note: The leader length must be added	Room ft ² x 1.0 = active loop at 12" o.c.
to the active loop length in order to obtain	Room $ft^2 x 1.2 = active loop at 10" o.c.$
the total loop length.	Room ft ² x 1.33 = active loop at 9" o.c.
	Room ft ² x 1.5 = active loop at 8" o.c.
	Room ft ² x 1.7 = active loop at 7" o.c.
	Room ft ² x 2.0 = active loop at 6" o.c.

AMOUNT OF JOIST TRAK[™] PANELS (A5080375, A5080500) Active loop length x 0.2125

AMOUNT OF QUIK TRAK™ PANELS (A5060701) AND RETURNS (A5060702)

Room ft² x 0.386 (panels)

Room ft² x 0.386 (panels)

AMOUNT OF PEX CLIPS (F7060375, F7051258, F7057500, F7051001)

Active Loop Length ÷ 3

FLOOR SURFACE TEMPERATURE

(BTU/h/ ft² ÷ 2.0) + Room setpoint

SUPPLY FLUID TEMP. AFTER FIRST INJECTION POINT ON PRIMARY LOOP		
$(F_{A} x T_{A}) + (F_{B} x T_{B}) = (F_{C} x T_{C})$		
$\begin{array}{l} {F_{_{A}}} = \mbox{Primary flow rate after injection leg} \\ {F_{_{B}}} = \mbox{Flow rate for return injection leg} \\ {F_{_{C}}} = \mbox{Primary flow rate after return leg} \\ {T_{_{A}}} = \mbox{Primary temp. after injection leg} \\ {T_{_{B}}} = \mbox{Return temp. on return injection leg} \\ {T_{_{C}}} = \mbox{Primary temp. after return leg} \end{array}$		
Example: Given the detail above, calculate the primary loop (boiler loop) temperature after the first injection location.	$(7 \times 180) + (3 \times 160) = 10x$ 1260 + 480 = 10x 1740 = 10x The primary loop temperature after the first injection location is 174°F.	

INJECTION PUMP FLOW RATES		
$F_{v} = (F_{1} \times T_{p}) \div (T_{1} - T_{R})$		
$F_v = Flow rate (injection loop) in gpm$ $F_1 = Radiant (secondary loop) flow rate in gpm$ $T_1 = Boiler (primary loop) supply temp.$ $T_2 = Radiant (secondary loop) supply temp.$ $T_R = Radiant (secondary loop) return temp.$ $T_p = Radiant (secondary loop) differential temp.$		
Example: If values at design condition are: $F_1 = 30 \text{ gpm}$ $T_1 = 180^\circ\text{F}$ $T_2 = 130^\circ\text{F}$ $T_R = 120^\circ\text{F}$ $T_D = 10^\circ\text{F}$	Find the injection pump flow rate. $F_v = (30 \times 10) \div (180 - 120)$ $F_v = (300) \div (60)$ $F_v = 5 \text{ gpm}$	

LOADED FOR MOTORIZED VALVE ACTUATORS (MVA)
Computed at a minimum 10% line loss
MVA draw: 0.29 amps
Amps x volts = current
0.29 x 24 = 6.96 VA per MVA
Example:
50 VA ÷ 6.96 VA = 7.18 x 0.9 = 6.5 (10%)
6 MVA per 50 VA transformer
40VAC transformer = 5 MVA
50VAC transformer = 6 MVA
75VAC transformer = 9 MVA
100VAC transformer = 12 MVA

LOADED FOR THERMAL ACTUATORS (TA)	
Computed at a minimum 10% line loss	
TA initial draw: 0.1458 amps	
Amps x volts = current	
0.1458 x 24 = 3.5 VA per TA	
Example:	
50 VA ÷ 3.5 VA = 14.29	
14.29 x 0.9 = 12.83 (10% reduction)	
12 TAs per 50 VA transformer	
40VAC transformer = 10 TA	
50VAC transformer = 12 TA	
75VAC transformer = 19 TA	
100VAC transformer = 25 TA	Continued on next page

Refer to manufacturer's instructions and local codes.

uponor

HYDRONIC FORMULAS

Continued

LOADED FOR THERMAL ACTUATORS (TA)

Computed at a minimum 10% line loss

Fuel consumption based on degree day:

$F = \frac{HL \times 24 \times DD}{E \times P \times TD}$

HL = Heating load (BTU/h)

24 = Hours in a day

DD = Degree day

E = Boiler efficiency (AFUE)

P = Heating value of fuel (BTU)

TD = Temperature differential

F = Annual fuel consumption

Example: A 40,000 square-foot hangar in Bangor, Maine using an 82% AFUE oil boiler (Number 2 fuel oil). The heat load for the hangar is 1,288,128 BTU/h at design. Outside design temperature is -11°F with an indoor setpoint temperature of 65°F. Number 2 fuel oil is priced at \$0.80 per gallon.

F= 1,288,128 x 24 x 8,220

0.82 x 138,000 x 76

254,121,891.840

8,662,480

F=

- F = 29,335.93 gallons of fuel oil
- F = 29,335.93 x 0.80 = \$23,469/season

FUEL COMPARISON IN BTU		
Natural Gas	100,000 BTU per 1 CCF (1 therm.)	
Propane	91,800 BTU per gallon	
No. 2 Fuel Oil	139,000 BTU per gallon	
Kerosene	134,000 BTU per gallon	
Electric	3,412 BTU per Kilowatt Hour (KWH)	
Wood	14,000,000 BTU per cord (mixed)	

SUPPLY AND RETURN PIPE SIZING (AT A 10°F Δ t)			
Tubing	BTU/h	GPM	Pipe Size (in.)
	10K - 20K	2-4	3/"
0	20K - 45K	4-9	1"
Copper	30K - 80K 50K - 105K	6-16 10-21	1 ¼" 1 ½"
	100K - 225K	20-45	2"
Multi-layer	10K - 20K	2-4	3/"
Composite (MLC)	20K - 45K	4-8	1"
PEX	2.5K - 10K	0.5-2	1/2"
(Wirsbo hePEX™	5K - 15K	1-3	3/4"
and Uponor	15K - 25K	3-5	1"
AquaPEX®)	20K - 45K	4-9	1 ¼"
	30K - 70K	6-14	1 1⁄2"
High-density	75K - 205K	15-41	2"
Polyethylene	150K - 575K	30-115	3"
(HDPE)	250K - 1,125K	50-225	4"

BOILER MAIN PIPE SIZING (AT A 20°F Δt)			
Tubing	BTU/h	GPM	Pipe Size (in.)
Copper	20K - 40K	2-4	3/4"
	40K - 90K	4-9	1"
	60K - 160K	6-16	1 ¼"
	100K - 210K	10-21	1 1⁄2"
	200K - 450K	20-45	2"

HYDRONIC FORMULAS

ZONING MADE EASY

RULES OF THUMB

FLOW RATE

NET BTUh LOAD = FLOW RATE

10,000

MAXIMUM FLOW RATE

Pipe size (Copper) ½" 3⁄4" 1"

1 1/4"

Maximum Flow Rate 1 ½ gpm 4 gpm 8 gpm 14 gpm

MAXIMUM FLOW RATE & HEAT CARRYING CAPACITY

	Maximum Flow Rate	Heat Carrying Capacity
	1 ½ gpm	15,000 BTUh
Pipe size (Copper)	4 gpm	40,000 BTUh
1/2"	8 gpm	80,000 BTUh
3/4"	14 gpm	140,000 BTUh
1" 1 1/"	(Based on 20°F temperature drop across the system)

1 1⁄4"

MAXIMUM LENGTH OF FIN-TUBE BASEBOARD LOOP

Baseboard Size (Copper)	Typical BTUh per Linear Foot	Maximum Length of Baseboard Loop
1/2"	600	25'
3/4"	600	67'
1"	770	104'
1 1⁄4"	790	107'

(Based on 180°F average water temperature and a 20°F temperature drop across the system.)

MAXIMUM LENGTH OF FIN-TUBE BASEBOARD LOOP

- 1. Measure the longest run in feet.
- 2. Add 50% to this.
- 3. Multiply that by .04 ... and that's the pump head!

